MIDAS Sound System

APl Reference

Petteri Kangaslampi

March 22, 1997

Contents

1

I ntroduction 1
1.1 Aboutthisdocument 1
1.2 Documentorganization e e e e e e e e 1
Configuration, initialization and control 2
21 Constants 2
211 MIDASOPHONS . . . o oo e 3
212 MIDASMOdes 4
213 MIDASdsoundModes 5
22 Daatypes 6
23 Functions 7
231 MIDASSartup 8
232 MIDASgetDisplayRefreshRate. 9
233 MIDASIt e 11
234 MIDASClose 12
235 MIDASdetectSoundCard 13
236 MIDASsatOption e 15
237 MIDASCONfig. . . . o o 16
238 MIDASsaveConfig e 17
239 MIDASoadConfig 18

CONTENTS

3 System control

3.1

3.2 Datatypes

3.3

Constants

Functions

331 MIDASgetLastError

332 MIDASgetErrorMessage

333 MIDASsuspend

334 MIDASresUME

335 MIDASopenChannels

3.3.6 MIDAScloseChannels

3.3.7 MIDASsetAmplification

338 MIDASstartBackgroundPlayo

339 MIDASstopBackgroundPlayo

3310 MIDASpoll

3.3.11 MIDASgetVersonString e

3.3.12 MIDASsetTimerCallbacks

3.3.13 MIDASremoveTimerCalbacks

4 Module playback

4.1

4.2 Datatypes

4.3

Constants

421 MIDASmodulelnfo

422 MIDASInstrumentinfo

423 MIDASPIAYSIEUS .« « o« o o oo

424 MIDASmodule

Functions

431 MIDASlcadModule

CONTENTS i

432 MIDASplayModule 44

433 MIDASfreeModule 46
434 MIDASGEPIaYSIAtUS . « « o o v o e 47

435 MIDASsetPosition e 48

43.6 MIDASsetMusicVolume 49

437 MIDASgetModuleinfo L 50

4.3.8 MIDASgetinstrumentinfo oL 51

439 MIDASsetMusicSyncCallbacko 52

5 Sample playback 53
5.1 Constants 53
511 MIDASsampleTypes 54

512 MIDASIOOP. . . . o oo e 55
513 MIDASpanning oo e 56

514 MIDASchannels 57

5.2 Datatypes 58
521 MIDASsample 59
522 MIDASsamplePlayHandle 60

53 Functions 61
531 MIDASloadRawSample 62

532 MIDASfreeSample 63

533 MIDASsetAutoEffectChannels. 64

534 MIDASPlaySamMPle . © o o o v o e 65

535 MIDASstopSample 67

53.6 MIDASsetSampleRate 68

537 MIDASsetSampleVolume oo 69

538 MIDASsetSamplePanning 70

539 MIDASsetSamplePriorityo 71

CONTENTS WY
6 Stream playback 72
6.1 Constants 72
6.2 Datatypes e 73
6.21 MIDASstreamHandle. L 74

6.3 FUNCLIONS e 75
6.3.1 MIDASplayStreamFile 76

6.3.2 MIDASstopStream 78

6.3.3 MIDASplayStreamPolling 79

6.34 MIDASfeedStreamDatao 80

6.35 MIDASsetStreamRate 81

6.3.6 MIDASsetStreamVolume. L 82

6.3.7 MIDASsetStreamPanningo 83

Chapter 1

| ntroduction

1.1 About thisdocument

This document contains a full programmer’s reference for the MIDAS Application Program-
ming interface. It includes complete descriptions of all constants, data structure and functions
available in the API, plus examples on how to use them. It is not intended to be a tutorial on
using MIDAS — for that kind of information see MIDAS Programmer’s Guide.

1.2 Document organization

The document itself is divided into six different chapters, according to different functional
groups. In addition to this introduction, the chapters cover configuration and initialization,
overall system control, module playback, sample playback and stream playback. Each chapter
is further divided into three sections: constants, data types and functions.

Chapter 2

Configuration, initialization and control

2.1 Congtants

This section describes all constants used in MIDAS initialization and configuration. They are
grouped according to the enumused to define them.

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 3

2.1.1 MIDASoptions

enum M DASopt i ons

Description

These constants are used with the function MIDASsetOption to change different MIDAS con-
figuration options.

Values

MIDAS OPTION_MIXRATE Output mixing rate

MIDAS_OPTION_OUTPUTMODE Output mode, see enumMIDASModes

MIDAS_OPTION_MIXBUFLEN Mixing buffer length, in milliseconds

MIDAS_OPTION_MIXBUFBLOCKS The number of blocks the buffer should be divided
into

MIDAS_OPTION_DSOUND_MODE DirectSound mode to use, see enum MIDASdsound-
Modes

MIDAS OPTION_DSOUND_HWND Window handlefor DirectSound support. The window
handle is used by DirectSound to determine which window has the focus. The window
handle has to be set when using DirectSound.

MIDAS OPTION_DSOUND_OBJECT The DirectSound object that should be used. Setting
this option forces DirectSound support on.

MIDAS.OPTION_DSOUND_BUFLEN Output buffer length fot DirectSound, in millisec-
onds. This option is used instead ond MIDAS_OPTION_MIXBUFLEN when using Di-
rectSound without emulation.

MIDAS. OPTION_16BIT_ULAW _AUTOCONVERT Controls whether 16-bit samples will
be automatically converted to u-law or not. Enabled by default. The autoconversion only
applies to Sound Devices which can natively play u-law format data.

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 4

2.1.2 MIDASmModes

enum M DASnodes

Description

These constants are used to describe different MIDAS output modes. They are used with the
function MIDASsetOption, when changing the setting MIDAS OPTION_OUTPUTMODE.

Values

MIDAS MODE_8BIT_-MONO 8-bit mono output
MIDAS.MODE_16BIT_MONO 16-bit mono output
MIDAS MODE _8BIT_STEREO 8-hit stereo output
MIDAS MODE_16BIT_STEREO 16-hit stereo output

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 5
2.1.3 MIDASdsoundM odes

enum M DASdsoundMbdes

Description

These constants are used to describe different MIDAS DirectSound usage modes. By default
MIDAS does not use DirectSound at all, and DirectSound usage can be enabled by setting
MIDAS OPTION_.DSOUND_MODE. Note that MIDAS OPTION_.DSOUND_HWND needs to
be set when using DirectSound. A complete discussion of using DirectSound with MIDAS is
available at MIDAS Programmer’s Guide.

Values

MIDAS_DSOUND_DISABLED DirectSound usage is disabled

MIDAS_DSOUND_STREAM DirectSound is used in stream mode — MIDAS will play to a

DirectSound stream buffer. DirectSound usage is disabled if DirectSound runsin emula-
tion mode.

MIDAS_DSOUND_PRIMARY DirectSound isused in primary buffer modeif possible—MI-
DAS will play directly to DirectSound primary buffer. If primary buffer is not available
for writing, this mode behaves like MIDAS_.DSOUND_STREAM.

MIDAS.DSOUND_FORCE_STREAM Behaves like MIDAS_DSOUND_STREAM, except
that DirectSound is used aways, even in emulation mode.

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL

2.2 Datatypes

This section describes al data types used in MIDAS initialization and configuration.

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL

2.3 Functions

This section describes al functions available for MIDAS initialization and configuration.

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 8
2.3.1 MIDASstartup

BOOL M DASst art up(voi d)

Prepares MIDAS Sound System for initialization and use.

I nput

None.

Description

Thisfunction setsall MIDASS configuration variablesto default values and prepares MIDAS for
use. It must be called before any other MIDAS function, including MIDASnit and MIDASse-
tOption, is called. After this function has been called, MIDASclose can be safely called at any
point and any number of times, regardless of whether MIDAS has been initialized or not. Af-
ter calling this function, you can use MIDASsetOption to change MIDAS configuration before
initializing MIDAS with MIDASnit.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

Seealso

MIDASsetOption, MIDASnit, MIDASclose

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 9
2.3.2 MIDASgetDisplayRefreshRate

DWORD M DASget Di spl ayRef reshRat e(voi d)

Getsthe current display refresh rate.

I nput

None.

Description

Thisfunction triesto determine the current display refresh rate. It is used with MIDASsetTimer-
Callbacks to set a display-synchronized timer callback. It returns the current display refresh
rate in milliHertz (ie. 1000*Hz, 50Hz becomes 50000, 70Hz 70000 etc), or O if it could not
determine the refresh rate. The refresh rate may be unavailable when running under Win95 or
asimilar OS, or when the VGA card does return Vertical Retraces correctly (as some SVGA
cards do in SVGA modes). Thereforeit isimportant to check the return value, and substitute
some default valueif it is zero.

Unlike most other MIDAS functions, this function must be called before MIDASit is called,
asthe MIDAS timer may interfere with the measurements.

Note that the display refresh rate is display mode specific. Therefore you need to set up the
display mode with which you want to use display-synchronized timer callbacks before calling
this function. Also, if your application uses severa display modes, you must get the display
refresh rate for each mode separately, and remove and restart the display-synchronized timer
callbacks at each mode change.

Thisfunction isonly availablein MS-DOS.

Return value

The current display refresh rate, in milliHertz, or O if unavailable.

Operating systems

MS-DOS

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL

Seealso

MIDASset Timer Call backs

10

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 11
2.3.3 MIDASnit

BOCL M DASi ni t (voi d)

InitializesMIDAS Sound System.

I nput

None.

Description

This function initializes all MIDAS Sound System components, and sets up the API. Apart
from configuration functions, this function must be called before any other MIDAS functions
are used.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASsetOption, MIDASclose

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 12
2.3.4 MIDASclose

BOOL M DAScl ose(voi d)

Uninitializes MIDAS Sound System.

I nput

None.

Description

This function uninitializes all MIDAS Sound System components, deallocates all resources
alocated, and shuts down all MIDAS processing. This function must always be called before
exiting under MS-DOS and is also strongly recommended under other operating systems. After
this function has been caled, no MIDAS function may be called unless MIDAS is initialized

again.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

Seealso

MIDASnit

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 13
2.3.5 MIDASdetectSoundCard

BOOL M DASdet ect SoundCar d(voi d)

Attemptsto detect the sound card to use.

Input

None.

Description

[MS-DOS only]

Thisfunction attempts to detect the sound card that should be used. It will set up MIDASto use
the detected card, and return TRUE if a sound card was found, FALSE if not. If this function
returns FAL SE, you should run MIDASconfig to let the user manually select the sound card.
Note that you can use MIDAS even if no sound card has been selected - MIDAS will just not
play sound in that case.

If no sound card has been manually set up, MIDASit will automatically detect it, or use No
Sound if none is available. Therefore this function does not have to be called if manual setup
will not be used.

Note that, as there is no way to safely autodetect the Windows Sound System cards under MS-
DOS, MIDAS will not attempt to detect them at all. If you do not provide a manual setup
possibility to your program (via MIDASconfig), WSS users will not be able to get any sound.
The computer may also have several sound cards, and the user may wish not to use the one au-
tomatically detected by MIDAS. Thereforeit isavery good ideato include an optional manual
sound setup to al programs.

This discussion naturally applies to MS-DOS only, under Win32 and Linux MIDAS uses the
sound card through the system audio devices, and no sound card selection or setup is necessary.

Return value

TRUE if a sound card was detected, FALSE if not.

Operating systems

MS-DOS

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL
Seealso

MIDASconfig, MIDAS nit

14

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 15
2.3.6 MIDASsetOption

BOOL M DASset Option(int option, DWORD val ue)

Setsa MIDAS option.

I nput

option Option number (see enumMIDASoptions above)
value New valuefor option
Description

Thisfunction setsavalueto a MIDAS option. The different number codes for different options
are described above. All MIDAS configuration options must be set with this function before
MIDASit is called.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDAS nit

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 16
2.3.7 MIDASconfig

BOOL M DASconf i g(voi d)

Runs manual MIDAS setup.

I nput

None.

Description

This function runs the manual MIDAS MS-DOS setup. It prompts the user for the sound card
to use, its hardware setup, and the desired output mode. The setup entered can be saved do
disk with MIDASsaveConfig, and loaded back with MIDAS oadConfig. These functions can be
used to create a simple external setup program, or just save the settings between two runs of
the program. After this function has been called, MIDASsetOption can be used to change the
output mode options, to, for example, force mono output.

This function returns TRUE if the setup was completed successfully, FALSE if not. The setup
can fail for two reasons: either the user aborted it by pressing escape, or an error occured.
As errors during the setup are extremely unlikely, it is safe to simply exit the program if this
function returns FALSE. MIDASgetLastError can be used to check if an error occured — if the
return value is zero, the user just pressed Escape.

This function must be called before MIDASnit, but after MIDASstartup.

Return value

TRUE if successful, FALSE if not (the user pressed escape, or an error occured)

Operating systems

MS-DOS

Seealso

MIDASsaveConfig, MIDAS oadConfig, MIDASsetOption, MIDAS nit

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 17
2.3.8 MIDASsaveConfig

BOOL M DASsaveConfig(char *fileName)

Saves the MIDAS setup to afile.

I nput

fileName Setup file name

Description

Thisfunction savesthe MIDAS setup entered with MIDASconfig to afile on disk. It can be then
loaded with MIDAS oadConfig.

Return value

TRUE if successful, FALSE if not.

Operating systems

MS-DOS

See also

MIDASconfig, MIDAS oadConfig

CHAPTER 2. CONFIGURATION, INITIALIZATION AND CONTROL 18
2.3.9 MIDASoadConfig

BOOL M DASI oadConfi g(char *fileName)

Load MIDAS setup from disk.

I nput

fileName Setup file name

Description

Thisfunction loads MIDAS setup from disk. The setup must have been saved with MIDASsave-
Config. MIDASsetOption can be used afterwards to change, for example, the output mode.

This function must be called before MIDASnit, but after MIDASsetDefaults.

Return value

TRUE if successful, FALSE if not.

Operating systems

MS-DOS

Seealso

MIDASconfig, MIDASsaveConfig

Chapter 3

System control

3.1 Constants

Thissection describesall constantsused in MIDAS system control. They are grouped according
to the enumused to define them.

19

CHAPTER 3. SYSTEM CONTROL

3.2 Datatypes

This section describes al datatypes used in MIDAS system control.

20

CHAPTER 3. SYSTEM CONTROL 21

3.3 Functions

This section describes all functions available for MIDAS system control. This includes error
handling.

CHAPTER 3. SYSTEM CONTROL 22
3.3.1 MIDASgetLastError

int M DASget Last Error(void)

Getsthe MIDAS error code for last error.

I nput

None.

Description

This function can be used to read the error code for most recent failure. When a MIDAS API
function returns an error condition, this function can be used to determine the actual cause of
the error, and this error can then be reported to the user or ignored, depending on the kind of

response needed. Use MIDASgetErrorMessage to get a textual message corresponding to an
error code.

Thisfunction can be called at any point after MIDASstartup has been called.

Return value

MIDAS error code for the most recent error.

Operating systems

All

See also

MIDASgetErrorMessage

CHAPTER 3. SYSTEM CONTROL 23
3.3.2 MIDASgetError M essage

char *M DASget Error Message(int error Code)

Gets an error message corresponding to an error code.

I nput

errorCode The error code from MIDASgetLastError

Description

This function returns a textual error message corresponding to a MIDAS error code. It can be
used for displaying an error messageto the user. Use MIDASgetLastError to determinethe error
code.

Thisfunction can be caled at any point after MIDASstartup has been called.

Return value

Error message string corresponding to the error code.

Operating systems

All

See also

MIDASgetLastError

CHAPTER 3. SYSTEM CONTROL 24
3.3.3 MIDASsuspend

BOOL M DASsuspend(voi d)

Suspends MIDAS Sound System.

I nput

None.

Description

Thisfunction suspends all MIDAS Sound System output, and rel eases the system audio device
to other programs. Playback can be resumed with MIDAS esume. Suspending and resuming
MIDAS can be used to change some of theinitial configuration options (set with MIDASsetOp-
tion) on the fly. In particular, the DirectSound mode and DirectSound window handle can be
changed while MIDAS is suspended, and the new values take effect when MDIAS is restarted.
Buffer size can aso be changed, although this is not recommended. Output mode and mixing
rate cannot be changed without completely uninitializing MIDAS.

While MIDAS is suspended, all MIDAS functions can be called normally — the sound simply
isnot played. Also, stream, module and sample playback positions do not changewhile MIDAS
IS suspended.

Note that MIDASsuspend and MIDAS esume are only available in Win32 systems at the mo-
ment.

Return value

TRUE if successful, FALSE if not.

Operating systems

Win32

Seealso

MIDAS esume

CHAPTER 3. SYSTEM CONTROL 25

3.34 MIDASresume

BOOL M DASr esune(voi d)

Resumes MIDA'S sound playback.

I nput

None.

Description

This function re-allocates the system audio device to MIDAS, and resumes sound playback,

after being suspended with MIDASsuspend. See MIDASsuspend documentation for more infor-
mation about suspending MIDAS.

Note that this function may fail, if another application has captured the sound output device
while MIDAS was suspended.

Return value

TRUE if successful, FALSE if not.

Operating systems

Win32

See also

MIDASsuspend

CHAPTER 3. SYSTEM CONTROL 26
3.35 MIDASopenChannels

BOOL M DASopenChannel s(i nt nuntChans)

Opens Sound Device channels for sound and music output.

I nput

numChans Number of channelsto open

Description

This function opens a specified number of channels for digital sound and music output. The
channels opened can be used for playing streams, samples and modules. When MIDASplay-
Moduleis used to play modules, it will use the last possible channelsfor the module, so that the
first (nunChans - nunber - of - channel s-i n- nodul e) channels are available for effects and
streams.

If this function has not been called before MIDASplayModuleis called, MIDASplayModule will
open the channels it needs for module playback. However, if this function has been called, but
the number of channels opened isinadequate for the module, MIDASplayModule will return an
error and refuse to play the module.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDAScloseChannels, MIDASplayModule

CHAPTER 3. SYSTEM CONTROL 27
3.3.6 MIDAScloseChannels

BOOL M DAScl oseChannel s(voi d)

Closes Sound Device channels opened with MIDASopenChannels.

I nput

None.

Description

Thisfunction closes Sound Device channels that were opened with MIDASopenChannels. Note
that you may not use this function to close channels that were opened by MIDASplayModule
— MIDASstopModule will do that automatically.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASopenChannels, MIDASplayModule, MIDASstopModule

CHAPTER 3. SYSTEM CONTROL 28
3.3.7 MIDASsetAmplification

BOOL M DASset Anpl i fication(DWORD anplification)

Sets sound output amplification level.

I nput

amplificaiton New output amplification level

Description

This function changes the output amplification level. Amplification can be used to boost the
volume of the music, if the sounds played are unusually quiet, or lower it if the output seems
distorted.. The amplification level is given as a percentage — 100 stands for no amplification,
200 for double volume, 400 for quadruple volue, 50 for half volume etc.

MIDAS has some build-in amplification, but the default amplification is designed for situations
where most channels have data played at moderate volumes (eg. module playback). If alot
of the channels are empty, or sounds are played at low volumes, adding amplification with this
function can help to get the total sound output at a reasonable level. The amplification set with
this function acts on top of the default MIDA S amplification, so nothing will be overridden.

Thisfunction can be called at any point after MIDASstartup.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

Seealso

CHAPTER 3. SYSTEM CONTROL 29
3.3.8 MIDASstartBackgroundPlay

BOOL M DASst ar t Backgr oundPl ay(DWORD pol | Rat e)

Starts playing music and sound in the background.

I nput

pollRate Polling rate (number of polls per second), O for default

Description

This function starts playing sound and music in the background. pollRate controls the target
polling rate — number of polls per second. Polling might not be done at actually the set rate,
although usually it will be faster. Under Win32 and Linux, a new thread will be created for
playing. Under MS-DOS this function is currently ignored, and background playback
startsimmediately when MIDAS s initialized.

Return value

TRUE if successful, FALSE if not.

Operating systems

All, but see MS-DOS note above.

Seealso

MIDASstopBackgroundPlay, MIDASpol|

CHAPTER 3. SYSTEM CONTROL 30
3.3.9 MIDASstopBackgroundPlay

BOOL M DASst opBackgr oundPl ay(voi d)

Stops playing sound and music in the background.

I nput

None.

Description

This function stops music and sound background playback that has been started with MI-
DASstartBackgroundPlay. Under Win32 and Linux, this function also destroys the thread cre-
ated for playback. Under MS-DOS this function is currently ignored, and background
playback startsimmediately when MIDAS sinitialized.

If background playback has been started with MIDASstartBackgroundPlay, this function bf
must be called before the program exits.

Return value

TRUE if successful, FALSE if not.

Operating systems

All, but see MS-DOS note above.

See also

MIDASstartBackgroundPlay, MIDASpol |

CHAPTER 3. SYSTEM CONTROL 31
3.3.10 MIDASpoll

BOOL M DASpol | (voi d)

Pollsthe MIDAS sound and music player.

I nput

None.

Description

This function can be used to poll MIDAS sound and music player manualy. It plays music
forward, mixes sound data, and sends it to output. When using manual polling, make sure
you call MIDASpoll often enough to make sure there are no breaks in sound output — at least
two times during buffer length, preferably four times or more. Under multitasking operating
systems such as Win32 and Linux, this may be difficult, so very short buffer sizes can’t be used
reliably.

Also note that currently this function is not available under MS-DOS. Under MS-DOS,
playback is aways done in background using the system timer (IRQ 0).

Return value

TRUE if successful, FALSE if not.

Operating systems

Win32, Linux

Seealso

MIDASstartBackgroundPlay, MIDASstopBackgroundPlay

CHAPTER 3. SYSTEM CONTROL 32
3.3.11 MIDASgetVersionString

char *M DASget Ver si onStri ng(voi d)

Getsthe current MIDAS version as a string.

I nput

None.

Description

Thisfunction can be used to determine the MIDAS version being loaded. It returns atext string
description of the version. Version numbers are usually of form “x.y.z”, where “x” isthe mgor
version number, “y” minor version number and “z” patch level. In some occasions, “z” can be
replaced with a textual message such as “rcl” for Release Candidate 1. All MIDAS versions

with the major and minor version numbers equal have a compatible DLL API, and can be used
interchangeably.

Return value

MIDAS Sound System version number as a string.

Operating systems

Win32, Linux

Seealso

CHAPTER 3. SYSTEM CONTROL 33
3.3.12 MIDASsetTimerCallbacks

BOOL M DASset Ti mer Cal | backs(DWORD rat e, BOOL di spl aySync,
void (M DAS CALL *preVR)(), void (MDAS CALL *i mVR)(),
void (MDAS CALL *inVR)());

Sets the user timer callback functions and their rate.

Input

rate Timer callback rate, in milliHertz (1000* Hz, 100Hz becomes 100000 etc)

displaySync TRUE if the callbacks should be synchronized to display refresh, FALSE if not.
preVR preVR callback function pointer or NULL

immVR immVR callback function pointer or NULL

inVR inVR callback function pointer or NULL

Description

This function sets the user timer callback functions and their call rate. The functions will be
called periodically by the MIDAS timer interrupt, one after another. Any of the callback func-
tion pointers may be set to NULL — the callback is then ignored.

If displaySync is TRUE, the timer system attempts to synchronize the callbacks to the display
refresh. In that case, preVR iscalled just before the Vertical Retrace starts, immVR immedi-
ately after it has started, and inVR later during retrace. preVR can then be used for changing
the display start address, for example. If display synchronization is used, rate has to be set to
the value returned by MIDASgetDisplayRefreshRate.

If displaySync is FALSE, or the timer system is unable to synchronize to display refresh (run-
ning under Win95, for example), the functions are ssmply called one after another: first preVR,
then immVR and last inVR. Note that display synchronization is not always possible, and this
may happen even if displaySyncisset to 1.

In either case, both the preVR and immVR functions have to be kept as short as possible, to
prevent timing problems. They should not do more than update afew counters, or set a couple
of hardware registers. inVR can take somewhat longer time, and be used for, for example,
setting the VGA palette. It should not take more than one quarter of the time between callbacks
though.

CHAPTER 3. SYSTEM CONTROL 34

The most common use for the timer callback functionsis to use them for controlling the pro-
gram speed. There one of the callbacks, usually preVR is simply used for incrementing a
counter. This counter then can be used to determine when to display a new frame of graphics,
for example, or how many frames of movement needs to be skipped to maintain correct speed.

Note that this function may cause a small break to music playback with some sound cards.
Therefore it should not be called more often than necessary. Also, if the application changes
display modes, any display-synchronized timer callbacks must be resetted, and a separate re-
fresh rate must be read for each display mode used.

M DAS_CALL isthe calling convention used for the callback functions— __cdec!| for Watcom C,
empty (default) for DJGPP. As the functions will be called from an interrupt, the module con-
taining the callback functions must be compiled with the* SS==DS’ setting disabled (command
line argument “-zu” for Watcom C, default setting for DJGPP).

Return value

TRUE if successful, FALSE if not.

Operating systems

MS-DOS

See also

MIDAS emoveTimer Callbacks, MIDASgetDisplayRefreshRate

CHAPTER 3. SYSTEM CONTROL 35
3.3.13 MIDASremoveTimerCallbacks

BOOL M DASrenoveTi mer Cal | backs(voi d)

Removes the user timer callbacks.

I nput

None.

Description

Thisfunction removesthe user timer call backs set with MIDASset Timer Callbacks. The callback

functionswill no longer be called. Thisfunction may not be called if MIDASsetTimer Callbakcs
has not been called before.

It is not necessary to call this function without exiting even if the callbacks have been used
— MIDAXlose will remove the callbacks automatically. On the other hand, if the callback
functions or rate are changed with MIDASsetTimer Callbacks, this function must be called to
remove the previous onesfirst.

Return value

TRUE if successful, FALSE if not.

Operating systems

MS-DOS

See also

MIDASset Timer Callbacks

Chapter 4

M odule playback

4.1 Constants

This section describes all constants used in MIDAS module playback. They are grouped ac-
cording to the enumused to define them.

36

CHAPTER 4. MODULE PLAYBACK

4.2 Datatypes

This section describes al datatypes used in MIDA S modul e playback.

37

CHAPTER 4. MODULE PLAYBACK

4.2.1 MIDASmModulelnfo

typedef struct

{

char

unsi gned
unsi gned
unsi gned
unsi gned

songNane[32] ;
songLengt h;
nunPat t erns;
num nstrunents;
nunChannel s;

} M DASnodul el nf o;

Module information structure.

Members

songName Module song name, an ASCIIZ string

songL ength Module song length in number of positions
numPatterns Number of patternsin module
numinstruments Number of instrumentsin module

numChannels The number of channels the module uses

Description

38

This structure is used with the function MIDASgetModulelnfo to query information about an

module. MIDASgetModul el nfo fills a MIDASmModul el nfo structure with the information.

CHAPTER 4. MODULE PLAYBACK 39

4.2.2 MIDASInstrumentlnfo

typedef struct

{
char i nst Nane[32] ;
} M DASI nst rument | nf o;

I nstrument information structure.

Members

instName Instrument name, an ASCIIZ string

Description

This structureis used with the function MIDASgetI nstrumentinfo to query information about an
instrument in a module. MIDASgetInstrumentinfo fills a MIDAS nstrumentinfo structure with
the information.

CHAPTER 4. MODULE PLAYBACK 40

4.2.3 MIDASplayStatus

typedef struct
{

unsi gned position;

unsi gned pattern;

unsi gned row,

I nt syncl nf o;
} M DASpl aySt at us;

Module status information structure.

Members

position Current playback position number
pattern Current playback pattern number
row Current playback row number

synclnfo Latest synchronization command infobyte, -1 if no synchronization command has
been encountered yet.

Description

This structure is used with the function MIDASgetPlayStatus to query the current module play-
back status. MIDASgetPlayStatus fills a MIDASplayStatus structure with the information.

Some more information about the synchronization commands. In FastTracker 2 and Scream
Tracker 3 modules, the command Wkx is used as a music synchronization command. The in-
fobyte of this command is available as the music synchronization command infobyte above.

CHAPTER 4. MODULE PLAYBACK
424 MIDASmModule

typedef ... M DASnhodul e;

Description

MIDASModuleis a module handle that defines a module that has been loaded into memory.

41

CHAPTER 4. MODULE PLAYBACK

4.3 Functions

This section describes al functions available for MIDAS module playback.

42

CHAPTER 4. MODULE PLAYBACK 43
4.3.1 MIDASloadModule

M DASnodul e M DASI oadModul e(char *fil eName)

L oads amodule file into memory.

I nput

fileName Module file name

Description

This function loads a module file into memory. It checks the module format based on the
modul e file header, and invokesthe correct loader to load the modul e into memory in GM Player
internal format. The module can then be played using MIDASplayModul e, and deall ocated from
memory with MIDASfreeModule.

Return value

Module handle if successful, NULL if not.

Operating systems

All

Seealso

MIDASplayModule, MIDASreeModule

CHAPTER 4. MODULE PLAYBACK 44
4.3.2 MIDASplayModule

BOOL M DASpl ayModul e(M DASmodul e modul e, i nt nunEf f ect Channel s)

Starts playing a module.

Input

module Module to be played
numEffectChannels Number of sound channelsto leave open for effects
Description

Thisfunctions starts playing a modul e that has been previously loaded with MIDAS oadModule.
If channels have not been previously opened using MIDASopenChannels, this function opens
the channels necessary to play the module, and if numEffectChannelsis nonzero, it opens ad-
ditional channels for sound effects. The module is always played on the last possible channels,
so the first numEffectChannels are available for effects and streams.

Note! Currently only one module can be played at atime.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

Seealso

MIDAS ocadModule, MIDASstopModule, MIDASopenChannel s
MIDASstopModule

BOOL M DASst opMbdul e(M DASnodul e nodul e)

Stops playing a module.

CHAPTER 4. MODULE PLAYBACK 45

Input

module Modulethat isbeing played

Description

This function stops playing a module that has been played with MIDASplayModyle. If the
channels were opened automatically by MIDASplayModule, this function will close them, but
if they were opened manually with MIDASopenChannels, they will be left open.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

Seealso

MIDASplayModule, MIDASopenChannels

CHAPTER 4. MODULE PLAYBACK 46
4.3.3 MIDASfreeModule

BOOL M DASf r eeMbdul e(M DASnodul e nodul e)

Deallocates amodule.

I nput

module Module that should be deallocated

Description

This function deall ocates a module loaded with MIDAS oadModule. It should be called to free
unused modules from memory, after they are no longer being played, to avoid memory leaks.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDAS oadModule

CHAPTER 4. MODULE PLAYBACK 47
4.3.4 MIDASgetPlayStatus

BOOL M DASget Pl aySt at us(M DASpl aySt at us *st at us)

Gets module playback status.

I nput

status Pointer to playback status structure where the status will be written.

Description

This function reads the current modul e playback status, and writesit to * status. The user needs
to passit avalid pointer to a MIDASplaySatus structure, which will be updated.

Return value

TRUE if successful, FALSE if not. The current playback status is written to * status.

Operating systems

All

See also

MIDASplayModule, MIDASplaySatus

CHAPTER 4. MODULE PLAYBACK 48
435 MIDASsetPosition

BOOL M DASset Posi tion(int newPosition)

Changes modul e playback position.

I nput
newPosition New playback position
Description

This function changes the current module playback position. The song starts at position 0, and
the length is available in the MIDASModul el nfo structure. You should make sure that position
lies inside those limits. To skip backward or forward a single position, first read the current
position with MIDASgetPlayStatus, and substract or add one to the current position.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

Seealso

MIDASplayModule, MIDASgetPlaySatus, MIDASgetModul el nfo

CHAPTER 4. MODULE PLAYBACK 49
4.3.6 MIDASsetMusicVolume

BOOL M DASset Musi cVol ume(unsi gned vol une)

Changes music playback volume.

I nput

volume New music playback volume (0-64)

Description

This function changes the music playback master volume. It can be used, for example, for
fading music in or out smoothly, or for adjusting the music volume relative to sound effects.
The volume change only affects the song that is currently being played — if a new song is
started, the volume isreset. The default music volume is 64 (the maximum).

Return value

TRUE if successful, FALSE if not.

Operating systems

All

Seealso

CHAPTER 4. MODULE PLAYBACK 50
4.3.7 MIDASgetM odulel nfo

BOOL M DASget Modul el nf o(M DASmodul e nodul e,
M DASrmodul el nfo *i nf o)

Gets information about a module.

Input

module Module handle for the module
info Pointer to a module info structure where the information willl be written
Description

This function returns information about a module, including the module name and the number
of channels used. The user needs to pass it a valid pointer to a MIDASmModulelnfo structure
(*info), where the information will be written.

Return value

TRUE if successful, FALSE if not. The module information iswritten to *info.

Operating systems

All

See also

MIDASplayModule, MIDASmModul el nfo

CHAPTER 4. MODULE PLAYBACK 51
4.3.8 MIDASgetlnstrumentlnfo

BOOL M DASget | nst runent | nf o(M DASmodul e nodul e,
int instNum M DASinstrumentlinfo *info)

Gets information about an instrument in a module.

Input
module Module handle for the module
instNum Instrument number
info Pointer to an instrument info structure where the information willl be written

Description

This function returns information about an instrument in a module, including the instrument
name. The user needs to pass it a valid pointer to a MIDAS nstrumentinfo structure (*info),
where the information will be written. You should ensure that instNum is a valid instrument
number. Instrument numbers start from 0, although trackers traditionally number them from 1,
and you can useMIDASgetModul el nfo to get the number of instruments available in amodule.

Return value

TRUE if successful, FALSE if not. The instrument information is written to *info.

Operating systems

All

See also

MIDASplayModule, MIDASgetModul el nfo, MIDASModul el nfo

CHAPTER 4. MODULE PLAYBACK 52
4.3.9 MIDASsetMusicSyncCallback

BOOL M DASset Musi cSyncCal | back(voi d (M DAS_CALL *cal | back)
(unsi gned syncl nfo, unsigned position, unsigned row))

Sets the music synchronization callback.

Input

callback Pointer to the callback function, NULL to disable

Description

This function sets the music synchronization callback function. It will be called by the MIDAS
music player each time a Wxx command is played from a FastTracker 2 or Scream Tracker 3
module. The functionwill receive asits arguments the synchronization command infobyte (xx),
the current playback position and the current playback row. Setting callback to NULL disables
it.

M DAS_CALL isthe calling convention used for the callback function— __cdec| for Watcom and
Visual C/C++, empty (default) for GCC. Under MS-DOS the function will be called from the
MIDAS timer interrupt, so the module containing the callback function must be compiled with
the “SS==DS’ setting disabled (command line argument “-zu” for Watcom C, default setting
for DJGPP). Under Win32 and Linux the function will be called in the context of the MIDAS
player thread.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

Seealso

Chapter 5

Sample playback

5.1 Congtants

This section describes al constants used in MIDAS sample playback. They are grouped ac-
cording to the enumused to define them.

53

CHAPTER 5. SAMPLE PLAYBACK 54

51.1 MIDASsampleTypes

enum M DASsanpl eTypes

Description

These constants identify different sasmple types. They are used with the functions MIDAS oad-
RawSample, MIDASplayStreamFile and MIDASplayStreamPolling to indicate the format of the
sample data. The byte order of the sample datais aways the system native order (little endian
for Intel x86 systems).

Values

MIDAS_SAMPLE_8BIT_MONO 8-hit mono sample, unsigned

MIDAS SAMPLE_8BIT_STEREO 8-hit stereo sample, unsigned

MIDAS SAMPLE_16BIT_MONO 16-bit mono sample, signed

MIDAS SAMPLE_16BIT_STEREO 16-bit stereo sample, signed
MIDAS.SAMPLE_ADPCM_MONO 4-bit ADPCM mono sample (streams only)
MIDAS.SAMPLE_ADPCM _STEREO 4-bit ADPCM stereo sample (streams only)

CHAPTER 5. SAMPLE PLAYBACK

5.1.2 MIDASloop

enum M DAS| oop

Description

These constants are used to indicate the loop type of a sample or stream.

Values

MIDAS LOOP_NO Sampleor stream does not |oop
MIDAS_LOOP_YES Sample or stream loops

55

CHAPTER 5. SAMPLE PLAYBACK 56

5.1.3 MIDASpanning

enum M DASpanni ng

Description

These constants are used to describe the panning position of a sound. Legal panning positions
range from -64 (extreme | eft) to 64 (extremeright), inclusive, plus MIDAS_PAN_SURROUND
for surround sound.

Values

MIDAS.PAN_LEFT Panning position full left
MIDAS.PAN_MIDDLE Panning position middle
MIDAS_PAN_RIGHT Panning position full right
MIDAS_PAN_SURROUND Surround sound

CHAPTER 5. SAMPLE PLAYBACK 57

514 MIDASchannels

enum M DASchannel s

Description

These constants are used to indicate the channel number a sound should be played on. Le-
ga channel numbers range from 0 upwards, depending on the number of open channels. In
addition, MIDAS_CHANNEL _AUTO can be used with MIDASplaySample.

Values

MIDAS CHANNEL _AUTO Select channel automatically, used with MIDASplaySample

CHAPTER 5. SAMPLE PLAYBACK

5.2 Datatypes

This section describes al data types used in MIDAS sample playback.

58

CHAPTER 5. SAMPLE PLAYBACK 59

52.1 MIDASsample

typedef ... M DASsanpl e;

Description

MIDASsample is a sample handle that defines a sample that has been loaded into memory. The
sample handle is used for identifying the sample when playing or deallocating it.

CHAPTER 5. SAMPLE PLAYBACK 60
5.2.2 MIDASsamplePlayHandle

typedef ... M DASsanpl ePl ayHandl e;

Description

MIDASsamplePlayHandleis a sample playing handle. It describes a sample sound that is being
played. The sample playing handle is used for controlling the attributes of the sound, such as
panning or volume, and for stopping the sound.

CHAPTER 5. SAMPLE PLAYBACK

5.3 Functions

This section describes al functions available for MIDAS sample playback.

61

CHAPTER 5. SAMPLE PLAYBACK 62

5.3.1 MIDASoadRawSample

M DASsanpl e M DASI oadRawSanpl e(char *fil enane, int sanpl eType,
int | oopSanpl e)

L oads a raw sound effect sample.

Input

filename Samplefile name
sampleType Sampletype, see enumMIDASsampleTypes
loopSample Sampleloop type, see enumMIDAS oop

Description

This function loads a sound effect sample into memory and adds it to the Sound Device. The
sample file must contain just the raw sample data, and al of it will be loaded into memory.
If loopSample is MIDAS_LOOP_YES, the whole sample will be looped. After the sample
has been loaded, it can be played using MIDASplaySample, and it should be deallocated with
MIDASreeSample after it is no longer used.

Return value

Sample handle if successful, NULL if failed.

Operating systems

All

See also

MIDASplaySample, MIDASfreeSample

CHAPTER 5. SAMPLE PLAYBACK 63
5.3.2 MIDASfreeSample

BOOL M DASf reeSanpl e(M DASsanpl e sanpl e)

Deallocates a sound effect sample.

I nput

sample Sampleto be deallocated

Description

This function deallocates a sound effect sample that has been previously loaded with MI-
DASoadRawSample. It removesthe samplefrom the Sound Device and deall ocatesthe memory
used. Thisfunction may not be called if the sampleis still being played.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDAS cadRawSample

CHAPTER 5. SAMPLE PLAYBACK 64
5.3.3 MIDASsetAutoEffectChannels

BOOL M DASset Aut oEf f ect Channel s(unsi gned first Channel,
unsi gned nuntChannel s)

Sets the range of channels that can be used as automatic effect channels.

Input

firstChannel First channel that can be used
numChannels Number of channels that can be used
Description

Thisfunction is used to set the range of channels that can be used as automatic effect channels
by MIDASplaySample. When MIDASplaySampleis passed MIDAS_.CHANNEL _AUTO asthe
channel number, it will use one of these automatic channelsto play the sound.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASplaySample

CHAPTER 5. SAMPLE PLAYBACK 65

534 MIDASplaySample

M DASsanpl ePl ayHandl e M DASpl aySanpl e(M DASsanpl e sanpl e,
unsi gned channel, int priority, unsigned rate,
unsi gned vol une, int panning)

Plays a sound effect sample.

Input

sample The sample that will be played

channel The channel number that is used to play the sasmple. Use MIDAS_CHANNEL_AUTO
to let MIDASplaySampl e select the channel automatically. See enumMIDASchannels.

priority Sample playing priority. The higher the value the more important the sample is con-
Sidered.

rate Initial samplerate for the sample
volume Initial volume for the sample

panning Initial panning position for the sample. See enumMIDASpanning.

Description

Thisfunction is used to play a sound effect sample on a given channel. The sample will receive
asinitial parameters the values passed as arguments, and playing the sample will be started. If
channel isMIDAS_ CHANNEL _AUTO, the channel will be selected automatically. The sample
playing priority is used to choose the channel the sample will be played on in this case.

This function returns a sample playing handle, that can later be used to stop the sample or
change its parameters. This makes it possible to refer to samples without knowing the exact
channel they are played on.

Return value

Sample playing handle if successful, NULL if failed.

Operating systems

All

CHAPTER 5. SAMPLE PLAYBACK
Seealso

MIDASstopSample, MIDASsetAutoEffectChannels

66

CHAPTER 5. SAMPLE PLAYBACK 67
535 MIDASstopSample

BOOL M DASst opSanpl e(M DASsanpl ePl ayHandl e sanpl e)

Stops playing a sample.

I nput

sample Sampleto be stopped

Description

This function stops playing a sound effect sample started with MIDASplaySample. Playing the
sound will stop, and the channel is freed for other samples to use. Note that sample is the
sample playing handle returned by MIDASplaySample.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASplaySample

CHAPTER 5. SAMPLE PLAYBACK
5.3.6 MIDASsetSampleRate

BOOL M DASset Sanpl eRat e(M DASsanpl ePl ayHandl e sanpl e,
unsi gned rate)

Changes the sample rate for a sound effect sample.

Input

sample Sample to be changed

rate New samplerate for the sample

Description

This function changes the sample rate for a sound effect sample that is being played.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

Seealso

MIDASplaySample

68

CHAPTER 5. SAMPLE PLAYBACK
5.3.7 MIDASsetSampleVolume

BOOL M DASset Sanpl eVol ume(M DASsanpl ePl ayHandl e sanpl e,
unsi gned vol une)

Changes the volume for a sound effect sample.

Input

sample Sample to be changed

rate New volume for the sample (0-64)

Description

This function changes the volume for a sound effect sample that is being played.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

Seealso

MIDASplaySample

69

CHAPTER 5. SAMPLE PLAYBACK 70
5.3.8 MIDASsetSamplePanning

BOOL M DASset Sanpl ePanni ng(M DASsanpl ePl ayHandl e sanpl e,
i nt panni ng)

Changes the panning position of a sound effect sample.

Input

sample Sample to be changed
panning New panning position for the sample (see enumMIDASpanning)
Description

This function changes the panning position of a sound effect sample that is being played. See
description of enumMIDASpanning for information about the panning position values.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

See also

MIDASplaySample

CHAPTER 5. SAMPLE PLAYBACK
5.3.9 MIDASsetSamplePriority

BOOL M DASset Sanpl ePriority(M DASsanpl ePl ayHandl e sanpl e,
int priority)

Changes the playing priority of a sound effect sample.

Input

sample Sample to be changed

priority New playing priority for the sample

Description

This function changes the playing priority a sound effect sample that is being played.

Return value

TRUE if successful, FALSE if not.

Operating systems

All

Seealso

MIDASplaySample

71

Chapter 6

Stream playback

6.1 Congtants

This section describes all constants used in MIDAS stream playback. They are grouped accord-
ing to the enumused to define them. Note that stream playback properties, such as volume and
panning, are controlled similarily those of samples.

72

CHAPTER 6. STREAM PLAYBACK

6.2 Datatypes

This section describes al datatypes used in MIDAS stream playback.

73

CHAPTER 6. STREAM PLAYBACK 74
6.2.1 MIDASstreamHandle

typedef ... M DASstreanHandl e;

Description

MIDASstreamHandle is a stream handle that defines adigital audio stream that is being played.
Streams only exist in the system when they are being played, so there is no separate “playing
handle” datatype.

CHAPTER 6. STREAM PLAYBACK

6.3 Functions

This section describes al functions available for MIDAS stream playback.

75

CHAPTER 6. STREAM PLAYBACK 76
6.3.1 MIDASplayStreamFile

M DASst r eanHandl e M DASpl aySt r eanti | e(unsi gned channel,
char *fileName, unsigned sanpl eType, unsigned sanpl eRat e,
unsi gned bufferLength, int |oopStream

Starts playing adigital audio stream from afile.

Input
channel The channel number the stream will be played on
fileName Stream file name
sampleType Stream sample type, see enumMIDASsampleTypes
sampleRate Stream samplerate
buffer Length Stream playback buffer length in milliseconds

loopStream 1 if the stream should be looped, O if not

Description

This function starts playing a digital audio stream from afile. It allocates the stream buffer,
creates a new thread that will read sample data from the file to the stream buffer, and starts
the Sound Device to play the stream. The stream will continue playing until it is stopped with
MIDASstopStream. When a stream is being played on a channel, that channel may not be used
for other purposes.

The stream buffer length should be at least around 500msif the stream file is being read from a
disc, to avoid breaks in stream playback

Return value

MIDAS stream handle if successful, NULL if failed.

Operating systems

Win32, Linux

CHAPTER 6. STREAM PLAYBACK
Seealso

MIDASstopStream

77

CHAPTER 6. STREAM PLAYBACK 78
6.3.2 MIDASstopStream

BOOL M DASst opSt reanm(M DASst r eanHandl e streamn

Stops playing adigital audio stream.

I nput

stream The stream that will be stopped

Description

Thisfunction stops playing adigital audio stream. It stops the stream player thread, deall ocates
the stream buffer and closes the stream file. The stream playback channel can then be used for
other purposes.

Return value

TRUE if successful, FALSE if not.

Operating systems

Win32, Linux

See also

MIDASplayStream

CHAPTER 6. STREAM PLAYBACK 79
6.3.3 MIDASplayStreamPolling

M DASst r eanHandl e M DASpl aySt reanPol | i ng(unsi gned channel ,
unsi gned sanpl eType, unsigned sanpl eRat e,
unsi gned buf f er Lengt h)

Starts playing a digital audio stream in polling mode.

Input

channel The channel number the stream will be played on
sampleType Stream sample type, see enumMIDASsampleTypes
sampleRate Stream samplerate

buffer Length Stream playback buffer length in milliseconds

Description

This function starts playing a digital audio stream in polling mode. It allocates and empty
stream buffer, and starts the Sound Device to play the stream. Sample data can be fed to the
stream buffer with MIDASfeedSteramData. The stream will continue playing until it is stopped
with MIDASstopStream. When a stream is being played on a channel, that channel may not be
used for other purposes.

To avoid breaks in playback, the stream buffer size should be at |east twice the expected polling
period. That is, if you will be feeding data 5 times per second (every 200ms), the buffer should
be at least 400ms long.

Return value

MIDAS stream handle if successful, NULL if failed.

Operating systems

Win32, Linux

See also

MIDASstopStream, MIDASfeedStreamData

CHAPTER 6. STREAM PLAYBACK 80
6.3.4 MIDASfeedStreamData

unsi gned M DASf eedSt r eanDat a(M DASst r eanHandl e stream
unsi gned char *data, unsigned nunBytes, BOOL feedAll);

Feeds sound datato a digital audio stream buffer.

Input
stream The stream that will play the data
data Pointer to sound data
numBytes Number of bytes of sound data available
feedAll TRUE if the function should block until all sound data can be fed

Description

This function is used to feed sample data to a stream that has been started with MIDAS
playStreamPolling. Up to numBytes bytes of new sample data from *data will be copied
to the stream buffer, and the stream buffer write position is updated accordingly. The function
returns the number of bytes of sound data actually used. If feedAll is TRUE, the function will
block the current thread of execution until all sound dataiis used.

Return value

The number of bytes of sound data actually used.

Operating systems

Win32, Linux

See also

MIDASplayStreamPolling

CHAPTER 6. STREAM PLAYBACK 81

6.3.5 MIDASsetStreamRate

BOOL M DASset St reanRat e(M DASst r eanHandl e stream
unsi gned rate);

Changes stream playback sample rate.

Input

stream Stream handle for the stream
rate New playback sample rate for the stream, in Hertz.
Description

This function changes the playback sample rate for a stream that is being played. The initial
sample rateis given as an argument to the function that starts stream playback.

Note that the stream playback buffer size is calculated based on the initial sample rate, so the
stream sample rate should not be changed very far from that figure. In particular, playback
sample rates over two times the initial value may cause breaks in stream playback. Too low
rates, on the other hand, will increase latency.

Return value

TRUE if successful, FALSE if not.

Operating systems

Win32, Linux

See also

MIDASsetSream\volume, MIDASsetSreamPanning

CHAPTER 6. STREAM PLAYBACK 82
6.3.6 MIDASsetStreamVolume

BOOL M DASset St reanmVol ume(M DASst r eanHandl e stream
unsi gned vol urme) ;

Changes stream playback volume.

Input

stream Stream handle for the stream
volume New volume for the stream, 0-64.
Description

Thisfunction changes the playback volume for astream that is being played. Theinitial volume
IS 64 (maximum).

Return value

TRUE if successful, FALSE if not.

Operating systems

Win32, Linux

See also

MIDASsetSreamRate, MIDASsetStreamPanning

CHAPTER 6. STREAM PLAYBACK 83
6.3.7 MIDASsetStreamPanning

BOOL M DASset St r eanPanni ng(M DASst r eanHandl e stream
i nt panning);

Changes stream panning position.

Input

stream Stream handle for the stream
panning New panning position for the stream
Description

Thisfunction changes the panning position for a stream that is being played. Theinitial volume
iSO (center). Seedescription of enumMIDASpanning for information about the panning position
values.

Return value

TRUE if successful, FALSE if not.

Operating systems

Win32, Linux

See also

MIDASsetSreamvolume, MIDASsetSreamRate

